
Abstract. In this paper we propose a method for carrying
out variational transition state theory calculations with-
out ®rst obtaining a converged minimum-energy path
(MEP). We illustrate the method in two ways, ®rst of all
by employing an unconverged MEP and secondly by
using a dynamically optimized distinguished reaction
path. Preliminary tests of the algorithm for the reactions
OH�H2 ! H2O�H and C2H5 ! C2H4 �H are very
encouraging.
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1 Introduction

Variational transition state theory (VTST) provides a
powerful computational tool for the study of chemical
reaction rates, and it has been applied successfully to a
variety of reactions in both the gaseous and condensed
phases. Several reviews are available [1±8]. The ultimate
justi®cation for the variational aspect of VTST is the
theorem, strictly valid only in classical mechanics, that
the one-way reactive ¯ux through a dividing surface
separating reactants and products provides an upper
bound to the local-equilibrium reaction rate [9±12]. It is
well known that the statistical mechanical evaluation of
the one-way ¯ux coe�cient at temperature T through a
trial dividing surface, generalized transition state (GT),
parameterized by a set of parameters P yields [9±12]

k�T � �
~kT
h

Ky;0 expfÿ�GGT;0�T ; P � ÿ GR;0�T ��=RTg; �1�

where ~k is Boltzmann's constant, h is Planck's constant,
Ky;0 is unity for unimolecular reactions and the recip-
rocal of the concentration in the standard state for
bimolecular reactions, GGT;0�T ; P � is the standard-state
molar free energy of systems in the dividing surface,
GR;0�T � is the standard-state molar free energy of
reactants, and R is the gas constant. When the parameter
P in Eq. (1) is varied to maximize the free energy of the
GT, Eq. (1) becomes the canonical VTST expression for
the rate coe�cient, usually abbreviated CVTST or CVT.
In practice, Eq. (1) is usually multiplied by a transmis-
sion coe�cient to account for, inter alia, tunneling,
nonclassical re¯ection along the reaction coordinate,
and incomplete minimization of the rate coe�cient with
respect to P , but consideration of such re®nements is
beyond the scope of the present paper.

We note as critical background for what follows that
a system mathematically localized in a dividing surface
has one less degree of freedom than an equilibrium
species. Thus, for a reactive system with N atoms, a
nonlinear GT has 3 translations, 3 rotations, 3Nÿ7 vi-
brations, and one degree of freedom orthogonal to the
dividing surface. The last-named degree of freedom is
traditionally called the reaction coordinate or the
``missing'' degree of freedom. Both conventional and
VTST assume that the missing degree of freedom is lo-
cally separable. In classical mechanics, if this degree of
freedom is not locally separable, one expects the upper
bound to be a poor one due to trajectories recrossing the
dividing surface (recrossing and breakdown of the
bound can also occur due to global nonseparability,
so local separability is a necessary but not a su�cient
criterion for the accuracy of the theory). In a quantum
mechanical computation, where vibrations are quantized
in calculating the free energies, local nonseparability of
the reaction coordinate is again expected to make the
calculated rate coe�cient too high, due now to the
quantum mechanical analog of recrossing trajectories. In
addition, local nonseparability makes the validity of any
approximations (e.g., the harmonic approximation)
employed in calculating GGT;0�T ; P � quite uncertain,
which could cause the calculated rate coe�cient to be
either too large or too small. In this respect we remind
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the reader that in a quantum mechanical world, it is
more appropriate to visualize the GTs as having a ®nite
width in the direction of the reaction coordinate [8, 13],
so nonseparability becomes even more signi®cant.

Almost all practical applications of VTST have used
the same prescription for parameterizing the trial
surfaces, which are called GTs, and which are the
trial variational transition states. This prescription,
introduced in 1979 [14±17], is strongly tied to a steepest-
descents reaction path. First one calculates the steepest-
descents path in isoinertial coordinates (i.e., coordinates
scaled to the same reduced mass for all possible direc-
tions of motion, e.g., normal coordinates of the saddle
point or mass-scaled or mass-weighted Cartesians). Such
a steepest-descents path is called the minimum-energy
path (MEP) [16, 18±20] or the intrinsic reaction path
[21]. One de®nes a scalar reaction coordinate s as the
signed arc length along this path. Then one de®nes a
single trial surface for each value of s such that the trial
surface intersects the MEP at s and is locally orthogonal
to the path. Since a steepest-descents path, by de®nition,
is locally tangent to the gradient of the potential energy
function, this means that the trial dividing surface is, at
the point where it intersects the MEP, orthogonal to the
gradient. For this set of trial dividing surfaces, the pa-
rameter set P reduces to a single scalar variable s. Then
GGT;0�T ; s� is maximized with respect to s.

Three critical questions arise at this point:
1. Is this set of trial dividing surfaces complete en-

ough to ®nd a variationally best transition state which is
good enough to calculate accurate rate coe�cients?

2. Is the reaction coordinate separable enough to
make recrossing e�ects small when trial dividing surfaces
are de®ned this way?

3. Are approximate quantized energy levels calculated
with practical techniques for such trial dividing surfaces
accurate enough to calculate quantitatively accurate rate
coe�cients in a quantum mechanical world?
These questions have been answered primarily through
experience [2, 3, 8, 15, 16, 22±28] by comparing CVT rate
constants to accurate quantal ones or to experimental
values, and the answers appear to be (1) yes, (2) yes, (3)
yes if curvilinear coordinates are used o� the MEP and
anharmonicity is included. When the harmonic approx-
imation is employed and the vibrations are treated
entirely in rectilinear coordinates, the quantized vibra-
tional levels of the generalized transition are less
physical, but the theory is still very useful for interpre-
ting experiments and predicting experimental rate coef-
®cients since the errors in the dynamical theory still
appear to be much smaller than the typical error
attributable to uncertainties in potential energy func-
tions (e.g., an error of 1.4 kcal/mol in the barrier height
leads to an error of a factor of 9.4 in the calculated rate
coe�cient at room temperature, and the errors due to
rectilinear vibrational frequencies and neglect of anhar-
monicity are expected to be smaller than this in most
cases). In the present paper we accept the limitations of
rectilinear frequencies and the neglect of anharmonicity,
but progress is being made in allowing the use of

curvilinear coordinates, as discussed elsewhere [29±31]
and new practical methods that may be useful for
including anharmonicity are available as well [32, 33].

The success of VTST calculations based on searching
along the MEP for the best transition state has perhaps
overshadowed one of its limitations, namely that it can
be expensive to calculate the MEP because small step
sizes are required to accurately compute a steepest-de-
scents path [34]. The main point of the present paper is to
present a practical method for carrying out VTST calcu-
lations without calculating an MEP. A spin-o� bene®t of
the proposed algorithm is that it can also be used to
extract a stable and meaningful CVT free energy of ac-
tivation from an MEP-based calculation carried out
with such large steps sizes that previously available
algorithms for calculating this quantity [34, 35] were
unstable or inaccurate.

Two other concepts that should be explained as
background to the present work are the distinguished-co
ordinate reaction path [36±38] which we call the distin-
guished coordinate path (DCP), and the gradient ext-
remal path (GEP) [38±43]. Both these types of path,
while not identical to the MEP, have the advantage that
they can be calculated with arbitrarily large step sizes
(because they are de®ned locally and not just in terms of
following a path continuously from the saddle point),
but in many cases they are expected to be close to, al-
though de®nitely not on, the MEP. One way to under-
stand the goal of the present work is to note that we have
now developed an algorithm that can be used to carry
out VTST calculations with data along a DCP, GEP, or
incompletely converged MEP, whereas the previous
algorithm required one to have data along a well-con-
verged MEP. We will justify the new algorithm, though,
in terms of the empirically successful MEP approach,
and the approximations we make are such that the new
method may well work best when the data points
obtained by a DCP, GEP, or large-step-size MEP cal-
culation (or any other similar method) are not too far
from the true MEP. We emphasize again though that the
previous algorithm was sensitive to even very small
deviations of the path points from the true MEP.

A point on a DCP is obtained by distinguishing some
internal coordinate as an approximate reaction coordi-
nate, constraining it to some predetermined value, and
optimizing the system (i.e., minimizing its energy) with
respect to all the other internal coordinates. For exam-
ple, in the concerted reaction A� BC! AB� C, one
might distinguish the AAB bond distance as an
approximate reaction coordinate on the reactant side of
the saddle point and the BAC bond distance as an
approximate reaction coordinate on the product side.

A point on a GEP is obtained by ®nding the location
where the gradient direction coincides with the direction
of one of the eigenvectors of the hessian. Since the GEP
in isoinertial coordinates passes through the reactants,
products, and saddle point and is locally tangent to the
MEP at those points, it is expected to often lie close to
the converged MEP even at ®nite distances from the
stationary points.
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2 Theory

We assume that a Taylor series of the potential, valid
through quadratic terms, is available for each of a series
of points along some reaction path which is not the
converged MEP. Specify these points as k � 1; 2; . . . ;K.
Let x denote a 3N -dimensional rectilinear isoinertial
coordinate system [32, 41], (A rectilinear coordinate
system is any coordinate system that can be obtained
from atomic cartesians by a linear transformation; this
includes normal-mode coordinates and Jacobi coordi-
nates as special cases.) Although the present develop-
ment is valid for any rectilinear, isoinertial coordinate
system, for concreteness we let

xi � �mi=l�1=2Ri; �2�
where R1;R2;R3;m1;m2, and m3 are the cartesian coor-
dinates and mass of atom 1, R4; R5; R6; m4; m5; and m6

are the cartesian coordinates and mass of atom 2, etc.
Let x�k� denote the K points where data is available. We
will consider trial dividing surfaces that are hyperplanes
in x and that pass through one of the points xL�k�. Let n̂
denote a unit vector normal to the hyperplane. For each
k we optimize the orientation of the dividing surface to
maximize the free energy of the generalized state at k.
De®ne the optimized value as

GOGT;0�T ; k� � max
n̂

GGT;0�T ; k; n̂�; �3�

where GGT;0�T ; k; n̂� is the free energy of the trial
transition state passing through point k with orientation
normal to n̂. Then the standard-state molar free energy
of activation of the variational transition state is
calculated by

GCVT;0 � max
k

GOGT;0�T ; k; �: �4�

The new algorithm has two steps: (1) calculation of
GGT;0�T ; k; n̂�, and (2) the maximization of this value
with respect to the orientation of the hyperplane, as
speci®ed by its unit normal n̂.

Step 1, the calculation of GGT;0�T ; k; n̂� proceeds as
follows. We assume that the Taylor series of the poten-
tial is available though quadratic terms:

V �x� � V0 � gy�k�r� 1

2
ryF�k�r; �5�

where

r � xÿ xL�k� �6�
V0 � V �xL�k�� �7�

gL�k� � @V
@x

����
x�xL�k�

� @V
@r

����
r�0
; �8�

and

Fii0 �k� � @2V
@xi@xi0

���
x�xL�k�

�9�

and y denotes a transpose. Note that gL�k� is the gradient
and F�k� is the hessian in the isoinertial coordinate

system at xL�k�, and we have suppressed k in the
notation for r, although of course it is a di�erent
variable for each k considered.

Consider a particular value of k. First we ®nd the
minimum energy in the hyperplane. To accomplish this
we de®ne a projected hessian by

FP �n̂� � �1ÿ n̂n̂y��1ÿ PRT�F�1ÿ PRT��1ÿ n̂n̂y�; �10�
where PRT projects onto the rotations and translations.
This is a generalization of the projector of Miller et al.
[45] and reduces to it if we replace n̂ by the gradient
direction, which is given by

ĝL � gL= gL
�� ��: �11�

[Generalizations similar to Eq. (10) have also been used
in the context of constrained optimization and con-
strained reaction paths [46, 47]]. We also de®ne a
projected gradient

gPL � �1ÿ n̂n̂y��1ÿ PRT�gL; �12�
where the inclusion of the projector �1ÿ PRT� is not
mathematically necessary (since the gradient is physical-
ly zero in the translational and rotational directions),
but it may help reduce rounding errors. Then it is easily
seen that the value of r that minimizes Eq. (5) within the
trial hyperplane is

rM � ÿ�FP �ÿ1gPL: �13�
Note that gPL and r will be zero if n̂ � ĝL. Finally the
minimum value of V is obtained as

V M � V0 � �gPL�yrM � 1=2�rM�yFP rM �14�
and the quantized vibrational energies are evaluated by

��n1; . . . ; n3Nÿ7� � V M � h
2p

X3Nÿ7

m�1
xm nm � 1

2

� �
; �15�

where nm is the vibrational quantum number of mode m,
and

xm � �Kmm=l�1=2; �16�
where Kmm is an eigenvalue of FP .

Although the above equations are formally correct,
FP has seven zero eigenvalues [six if xL�k� corresponds to
a linear geometry] and hence is singular; thus Eq. (13)
cannot be calculated quite so easily. Instead we diago-
nalize FP

LyFPL � K; �17�
where the columns of L are the eigenvectors. Then we
transform the gradient vector and displacement vector
to the eigenvector representation:

gEL � LygPL �18�
and

rEM � LyrM : �19�
In the eigenvector representation, Eq. (13) is replaced by

rEM � ÿKÿ1gEL: �20�
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If we order the eigenvalues and eigenvectors so that the
zero eigenvalues come last, we can constrain the last
seven elements of rEM to be equal to zero. This
constrains the minimization to conserve the center-of-
mass location and the orientation, and it forces the
optimized geometry to remain in the trial hypersurface.
This is easily accomplished by dropping the last seven
rows and columns of K; rEM, and gEL in Eq. (20). After
solving the resulting �3N ÿ 7� � �3N ÿ 7� version of
Eq. (20) in this reduced space, we add the last seven
elements of rEM back as zeros, and we obtain the desired
displacement vector in the original mass-scaled Carte-
sian coordinates by

rM � �Ly�ÿ1rEM: �21�
Now consider step 2, the optimization of the direction

of n̂. Step 1 above yields the optimum V M and the fre-
quencies which we use to calculate GGT;0�T ; k; n̂�. Call
this G�n̂�. We ®nd the maximum of G�n̂� iteratively by
the conjugate gradient algorithm [48a]. To apply the
conjugate gradient algorithm we require the derivatives
@G=@�n̂�i, where �n̂�i is a component of n̂. These are
evaluated by a two-point central di�erence algorithm.
This algorithm produces trial values of n̂ that are not
normalized, but this is not a problem since all we require
is the direction of n̂, so we normalize n̂.

3 Examples

We will illustrate the theory with three examples. The
®rst case corresponds to a CVT rate calculation at 200 K
for the reaction OH�H2 ! H2O�H. The other two
correspond to the reaction C2H5 ! C2H4 �H, and
since our goal is just to illustrate the theory we consider
only T � 0 K for this reaction. At zero temperature [17],

GGT;0�T � 0; k; n̂� � V0 � h
4p

X3Nÿ7

m�1
xm: �22�

All calculations were performed with a modi®ed version
of the POLYRATE computer program, version 7.0
[49±51]

3.1 Example 1

The ®rst case we consider is the reaction OH�H2 !
H2O�H with the Dunning-Walch-Schatz-Elgersma [52]
potential energy function and with an unconverged
MEP. The scaling mass is set equal to mOHmH2

=mH3O �
1:8 amu. The MEP was calculated by the Euler method
[34, 35] with gradient step size d and hessian step size 2d
in the range s � ÿ1:0 to �0:3 a0. The value of d is varied
from 0.005 to 0:03 a0. For each value of d, two
calculations are carried out. The ®rst uses our standard
algorithms [35, 44, 49] including, e.g., interpolation of
the free energies of activation by ®ve-point Langrangian
interpolation as the method of searching for the
maximum. The second calculation is identical to the
®rst except that V M and the frequencies are calculated
from the Taylor series of Eq. (5), where xL is a point on

the approximate (unconverged) MEP, by step 1 of the
algorithm above, and the orientation of the dividing
surface at each hessian point is numerically optimized by
step 2 of the algorithm above. Figure 1 compares the
calculated CVT rate constant at 200 K as a function of d
for the two procedures. When d � 0:0005 a0, the two
procedures give essentially identical results ± though the
second calculation gives slightly lower values for the
CVT rate constant. The ®gure shows the percentage
deviation from that converged value as d is increased.
We see that the original algorithm is very sensitive to
lack of convergence of the MEP, with an error of 86%
when d � 0:025 a0. For that same value of d, the new
algorithm gives an error of only ÿ10% .

3.2 Example 2

In the second example, we consider the reaction
C2H5 ! C2H4 �H in the high-pressure limit at the
MP2/6-31G(d; p) [53] level of electronic structure with
an unconverged MEP. We note for completeness that
in the MP2/6-31G(d; p� approximation, the value of
GGT;0�T � 0; s� is below 38.75 kcal at the reactant
geometry where the CAH bond length is 2.069 a0,
increases to 83.42 kcal at the saddle point where the
CAH bond distance is 3.523 a0, and then decreases to
70.68 kcal at the products where the CAH bond length is
1.

We set the scaling mass l equal to 1 amu. The MEP
was calculated with the Gonzalez-Schlegel mass-
weighted internal-coordinates reaction-path algorithm
[54] with a reaction-path step size of 0:02 a0 and a hes-
sian calculated every 0.02 a0. Again we performed two
calculations, one with the original CVT algorithm and
one with the new one described above. The results for
GGT;0�T � 0; k; s� are compared in the vicinity of the
saddle point �s � 0� in Fig. 2. The calculation with
the original algorithm is very noisy, and the one with the
new algorithm is smooth. Based on past experience, we
attribute the noise to lack of convergence of the MEP.

Fig. 1. Percentage error in CVT rate constant for OH�H2 !
H2O�H at 200 K as a function of step size d used to calculate the
reaction path. Squares connected by solid-line segments: original
algorithm. Circles connected by dashed-line segments: new algorithm
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The new algorithm is much less sensitive to this than the
old one.

3.3 Example 3

This example is again based on the reaction
C2H5 ! C2H4 �H in the high-pressure limit with the
MP2/6-31G(d; p) electronic structure level. In this case
we compare an MEP-based calculation of GGT;0

�T � 0; s� to two calculations based on a DCP, one of
them using the hypersurface normal to the gradient and
the other one using the algorithm above (steps 1 and 2).

The MEP-based calculation is the same as the cal-
culation in example 2 that applies the new algorithm.
This calculation is shown as the open circles connected
by a dashed curve. The second and third calculations in

Fig. 3 are DCP calculations. With this algorithm, one
can take arbitrarily large step sizes, and the points on the
DCP and their corresponding free-energy values can be
computed in any order since they do not depend on the
other points. The distinguished coordinate is taken to be
the bond length of the dissociating CAH bond. This
internal coordinate is ®xed successively at 1.82, 1.84,
1.86, 1.88 and 1.90 AÊ (or 3.3439, 3.477, 3.515, 3.553, and
3.590 a0), and we also include the saddle-point geometry
(where the CAH distance is 3.523 a0) as part of the DCP;
so K � 6. The ®lled circles connected by a long-dashed
line are the results of a DCP calculation using a dividing
surface through xL�k� and normal to the gradient at
xL�k�. The ®lled squares connected by a chain curve in
Fig. 3 are the results of a DCP calculation using the new
algorithm of Sect. 2, in which the orientation of the
dividing surface is optimized. The displacement vector
rM �k� gives the location, relative to xL�k�, of the point of
minimum energy in the optimum dividing surface
through xL�k�.

The set of points xL�k� de®nes the DCP, but the an-
alog of the MEP in this method is the set of re-optimized
geometries given by

xM �k� � xL�k� � rM�k�; �23�
which may be called the dynamically optimized DCP. In
general one would assign an s value by ®tting a curve
through the collection of these points and calculating the
signed distance from the saddle point along this curve.
In the present case, we use the simplest possible curve,
namely a sequence of straight-line segments connecting
the points on the dynamically optimized DCP, including
the saddle point. Note that in order to calculate the
distance between xM �k� and xM�k � 1�, we must ®rst be
sure that the orientation of the molecular system is
consistent [55]. In the present application this was
accomplished in an approximate way by simply orient-
ing each point so that its principal axes of inertia line up
with the principal axes at the previous point. The
straight line segments are used only to calculate s,
yielding values of ÿ0:117;ÿ0:064;ÿ0:012; 0:040, and
0.090 a0 for the ®ve points at which a DCP calculation
was carried out (recall that s � 0:0 a0 at the saddle-point
location, which is k � 4).

The ®rst DCP calculation, namely that obtained with
the dividing surface normal to the gradient, has a char-
acteristic dip on both sides of the saddle point. This kind
of dip is often found in unconverged MEP calculations,
and it has the following origin. If a point on an ap-
proximate MEP is too far o� the true MEP, the gradient
will have a signi®cant component directed toward the
MEP in addition to the expected component parallel to
the MEP. This is particularly likely to occur if the de-
viation in geometry has a component along a high-fre-
quency mode, since the potential rapidly becomes steep
in those directions. Since the original procedure places
the dividing surface normal to the gradient, it e�ectively
moves some of the high-frequency mode into the reac-
tion coordinate, replacing a part of the true reaction
coordinate, along which the potential is relatively ¯at
near the saddle point. Similarly a component of the true
reaction coordinate is exchanged into the GT dividing

Fig. 2. GGT;0�T � 0; s� for C2H5 ! C2H4 �H as a function of
position along the reaction path, which is an unconverged minimum-
energy path (MEP). Squares connected by solid-line segments: original
algorithm. Circles connected by dashed-line segments: new algorithm

Fig. 3. GGT;0�T � 0; s� for C2H5 ! C2H4 �H as a function of
position along the MEP. Circles connected by dashed-line segments:
new algorithm with an MEP (same as dashed curve in Fig. 2). Filled
circles connected by long dashed-line segments: original algorithm with
a distinguished coordinate path (DCP). Filled squares connected by
triple-dot-dash line segments: new algorithm with a DCP
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surface, replacing the missing component of the high-
frequency mode. As a consequence the calculated fre-
quency of one or more of the modes within the dividing
surface is reduced.

The third calculation in Fig. 3 is the DCP calculation
improved with the new algorithm above. It is clear that
the new algorithm provides a more physical description
of the region close to the saddle point. We emphasize
that the height of the adiabatic barrier is well described
using the new algorithm with the DCP calculation. In
particular, if we ®t a parabola to the three highest points
of the dynamically optimized DCP calculation, we ob-
tain a maximum value of GCVT;0�T � 0� � 83:42 kcal/
mol, whereas if we ®t a parabola to the three highest
points on the MEP curve in Fig. 3, the maximum is
GCVT;0�T � 0� � 83:43 kcal/mol. In actual practice,
based on results like those in Fig. 3, we might decide to
calculate more points in the region close to the maxi-
mum of GGT;0�T � 0; s� in order to re®ne the determi-
nation of the maximum of the curve and hence calculate
a more accurate CVT rate constant. This does not
appear necessary in the present case.

4 Discussion

We note that the algorithm as presented here is
intentionally very simple. We assume, having found
the minimum energy of the trial hyperplane, that the
geometry so obtained lies within the trust region for the
Taylor series of Eq. (5). Clearly one could improve on
this. For example one could evaluate the energy directly
at rM and compare it to the value calculated from the
Taylor expansion at r � 0. Or one could consider the
algorithm above as the ®rst step in a Newton-Raphson
iterative sequence. But either of these alternatives
requires additional electronic structure calculations and
raises the cost. It seems reasonable to test carefully how
far one can proceed with the present simple algorithm
and to complicate it only if and when necessary. The
results in Sect. 3 show that the new algorithm is quite
useful.

We have not addressed the question of tunneling. For
ground-state tunneling along the MEP one requires not
only the maximum of GGT;0�T � 0; s� but also the width
and shape of the barrier [19, 20, 35, 44, 56]. As men-
tioned above, we could convert GGT;0�T � 0; k�� 	K

k�1
into GGT;0�T � 0; s� by ®tting the points xM �k�f gK

k�1 to a
curve through �3N ÿ 7�-dimensional space and calcu-
lating the distance along this curve by numerical inte-
gration. In order for the distance along the curve to be
meaningful, one will have to be sure that the center of
mass and orientation are held constant along the path.
The simplest curve (which was used in example 3) is a set
of straight lines connecting the points. It would be more
accurate to ®t the points to a continuous curve. If one
does that, one can also attempt to take the derivatives of
this curve and calculate its curvature, which allows for a
more accurate estimate of tunneling probabilities [35, 49,
57]. It will require careful testing to see if this can be
done in a meaningful way without anchoring the path
®rmly to the MEP. It will be interesting, in future work,

to employ DCP (or GEP) calculations with much larger
step sizes and develop the procedures for using these for
tunneling calculations.

We think that an important use of the algorithm
presented here will be to allow the development of im-
proved versions of interpolated VTST (IVTST) [58±61].
In the polyatomic IVTST algorithm that has been pro-
posed so far [59] one calculates free energies for the re-
actants, products, and saddle point plus one or a few
``extra'' points on the MEP, and then one interpolates
GGT;0�T ; s� to the full range of s. However, since the
calculation of the MEP requires small steps, we have
been restricted to having the extra points very close to
the saddle point. It would be much more useful to have
extra points half-way or even a quarter of the way down
the hill from the saddle point toward reactants and/or
products. The present algorithm could be used to obtain
such data since the distinguished-coordinate path can be
calculated with arbitrarily large step sizes, and the
present algorithm allows one to calculate free energies of
activation along a distinguished-coordinate path.

5 Conclusion

We have presented an algorithm that allows one to
compute VTST rate constants without calculating the
MEP with a converged step size. It should allow one to
interface electronic structure theory and dynamics in a
more e�cient way.
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